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Abstract-Transmission of a concentrated force into a half-infinite nonlceal elastic medium is
examined. A nonlocal concentrated force boundary condition which is different from that of
Nowinski is derived from the nonlocal principle. The nonlocal stress field is obtained analytically,
The result eliminates the stress singularity which occurs in the classical stresses and also the nonloeal
stresses derived by Nowinski. A theoretical cut-off strength P, is discussed,

INTRODUCTION

Nowinski (1986) has recently examined the Boussinesq-Flamant problem for a nonlocal
elastic half-infinite space, namely, the concentrated line force Pb(x ,) acting on the boundary
plane x 2 = 0 of a half-infinite space. His results show that the nonlocal stresses coincide
with the classical expressions revealing a singular behaviour at the point of application of
the load. Thus, the nonlocal theory, under the assumption adopted by him, does not offer
anything new with regard to the stress field. The displacements, however, differ from
their classical counterparts, and can only be evaluated approximately. The fourth order
approximation found for the Poisson material (namely,). = JL and Poisson's ratio v = 0.25)
close to the line ofloading displays deviations from the classical values amounting to 35%.
It is well known that the applications ofnonlocal elasticity may eliminate singularities which
occur in the classical formulation and some results appear in physically more acceptable
forms. For example, the nonlocal stresses at a linear crack tip (Eringen, 1977a ; Wang, 1989a)
and at the cores of dislocations (Eringen, 1977b), and the self energy between separated
dilatation centres (Kovacs and Voros, 1979) do not exhibit classical singularities. Recently,
the classical line force problem (a continuous uniform distribution of a point force acting
along a line; Dundurs and Hetenyi, 1965) was generalized to the case of nonlocal elasticity
(Wang, 1988). The result shows that none of the classical singularities exist in the stresses.
Because of the nonlocal effect, the nonlocal line. force is a Gaussian function quite different
from the Dirac delta function of the classical line force and it satisfies the generalized
definition. It is suggested therefore that, in the description of concentrated forces, instead
of using the classical Dirac delta function model, nonsingular attenuation function models
should be adopted in nonlocal elasticity. In the problem ofa line force acting on the surface
of a nonlocal elastic half-infinite space, the nonlocaJ stresses obtained by Nowinski (1986)
still exhibit a classical singular behaviour. The nonlocal theory does not make an advance
in eliminating classical stress singularies in this problem. We consider the reason to be that
the adoption of the classical Dirac delta function model in the concentrated force boundary
condition is incorrect for a nonlocal elastic medium. The correctnonlocal concentrated
force boundary condition should be given according to the nonlocal principle (Wang, 1988).
The present work reconsiders the concentrated line loading problem of nonlocal elasticity
under the nonlocal concentrated force boundary conditions given by the above model. The
results show that the classical stress singularity at the point of the application of the load
is not present in the nonlocal stresses. The displacements are identical to their classical
counterparts.
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GENERAL EQUATIO:\S

The treatments in this section are similar to those of Nowinski (1986). The region
X1 ~ 0 of a Cartesian rectangular coordinate system. XIX:X}. is occupied by a linear,
homogeneous, isotropic. nonlocal elastic half-infinite medium. A line force of constant
intensity. P, distributed along the x3-axis, acts on the boundary plane x: = 0 in the direction
of the xc-axis. The equations of equilibrium under the state of a plane strain and the
condition of no body forces are

(I)

The expression of the nonlocal stresses in the Kroener-Eringen form is

(2)

where lx-x' I == IXI -X'I I, IX2-x;l, A is the region (- 'X < XI < 'X.X2 ~ 0), f./ and ).' are
the nonlocal elastic moduli, and eij is the linear strain tensor. Equation (2) can be written
as

til;:: L[(2f.l' +l')u'l,l +i.'U'2.2] dX'1 dX'2

t22 ;:: L[(2f.l' +X )U;.2 + j.'U'Ll] d:(j dx'2

t 12 ;:: Lf.l'(U'U+U'2.I)dX'1 dx'2. (3)

where UI and U2 are the displacement components. We apply the Fourier transformation

( ) 1 fO£ -(k ) -lin dkU Xj,X2 ;:: -2 U ,X2 e . I

1t -0£

to eqns (1) and (3) and arrive at the relations

-iktll +tI2.2 ;:: 0

-iktI2 +t22.2;:: 0
and

til = -ik1'" ([2P'(k, Ix'2 -x21)+2(k,lx'2 -X2l)]U'I(k,x;)

+x' (k, Ix; -X2 I)u'2. 2 (k, x'2)} dX'2

i22 = LX) ([2P'(k,lx'2-X21)+J.'(k,lx'2-X2\)]ii;.2(k,x;)

-ikJ.'(k, Ix; -x2I)u;(k,x;)} dx'i

t12;:: 1'" P' (k, Ix; -x21)[u'u(k, x;) -iku:(k, x;)] dx'2.

(4)

(5)

(6)
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The nonlocal elastic moduli can be determined by matching the phonon dispersion curves
based on atomic lattice dynamics and experiments with those resulting from nonlocal
elasticity (Eringen, 1977a). Several different forms of the nonlocal elastic moduli have been
found and applied to various problems (Eringen, 1983). According to the study ofNowinski
(1984) on wave propagation in nonlocal elastic media, the following relations between the
Fourier transforms of the nonlocal moduli and Lame constants can be written:

s(k) = J.(k) = ji(k) = X(k) +2ji(k) = sin
2

(ka/2)
-;. p. 1+2p. (ka/2) 2 '

(7)

where a is the atomic spacing between two neighbouring atoms of a perfect lattice, and k
is the Fourier transform coefficient and the wave number. With the nonlocal moduli
determined from eqn (7), the dispersion curves of one-dimensional plane elastic waves in
nonlocal elasticity coincide with those of the Born-Karman model of the lattice dynamics
in the entire Brillouin zone (Eringen, 1977a). Making use of the result in eqn (7), we represent
the nonlocal moduli associated with the problem under discussion in the form

ji'(k, Ix;-x2D = ji'(k)o(lx;-X21)

J.' (k, Ix; -X21) = X' (k)o(lx; -X21). (8)

This implies consideration of the nonlocal effect in the direction of the XI-axis. Nowinski
(1986) adopts the description of on(lx; - X2D[the nth term of an appropriately selected 0­
sequence whose limit for n --+ 00 is the Dirac delta function o(lx; -x21)] in the direction of
the xraxis and assumes that, for sufficiently large n, the On possess the shifting property
characteristic of the Dirac delta function o(lx; -X21). This is, in essence, the same conven­
tion. Substitution of eqn (8) into eqns (6) and (5) now gives

t ll (k,X2) = [-ik(2p.+l)ul(k,X2)+.lU2.2(k,X2)]s(k)

t22(k, X2) = [(2p+ .l)U2.2(k, X2) -ik.lul (k, x2)]s(k)

(l2(k, X2) = p.[U 1,2 (k, X2) - iHu2(k, x2)]s(k)

p.ul.22-iks(p+l)u2.2-k2(2p+).)u, = 0

-iks(p.+l)u,.2 + (2P.+.l)U2.22-k2p.U2 = 0,

where S = + 1 for k > 0 and S = - I for k < O. Solution of system (9) yields

UI =A e-skX2+Bx2 e-skx2

U2 = -Aise-skX2-Bi(~* +sx2)e-skX2

m* = (3p+l)j(p.+).).

The coefficients A and B are functions of the parameter k.

(9a)

(9b)

(9c)

(9d)

(10)

BOUNDARY CONDITIONS AND SOLUTION

The concentrated force boundary condition is prescribed with the classical Dirac delta
function by Nowinski (1986). The concentrated force is PO(XI)' The boundary conditions
in their transformed limit form are



1308 R. WANG

( II)

We consider this condition to be incorre~t for nonlocal elastic media. It brought about the
stress singularity in Nowinski's solutions. We determine the nonlocal concentrated force
boundary conditions according to the properties of the concentrated force in the nonlocal
elastic medium [eqns (2.10), (3.15) and (2.12) derived by Wang, 1988]. The nonlocal
concentrated force is now

(12)

and the Fourier transforms forms of the boundary conditions are

(13)

where et(lx II) is one-dimensional nonlocal kernel and e(k) = i (Ix I I). The coefficients A and
B can be derived from the combination of eqns (9b), (9c) and (13)

P Ps
A = 2i(p.+i.)k' B = - 2ip'

The transforms of the displacements and stresses are

til = -P(l-skx2)e-skx, e(k)

t22 = - P(I +skx2 ) e- skx , e(k)

t l2 = - Pikx 2 e- skx
, e(k).

( 14)

(15)

(16)

The transforms of the displacements do not depend on the nonlocal moduli. Their inverse
transforms are also independent of the nonlocal moduli. It is easy to verify that the
displacements coincide with the well-known classical expressions. This result supports the
viewpoint of solving the nonlocal stress field with the classical displacement field problems
(Wang, 1989b). On the contrary, it has already been mentioned that the displacements
obtained by Nowinski (1986) differ from their classical counterparts.

An inverse transformation of eqn (16) yields the nonlocal stress field

P
t 22 = -2 (It +/, +H +12)

no

(17)

where
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+ X2 (a±XI)2+x~ XI a±xllr =-2 In , , +XI arctan--(a±xl)arctan--
xi+xi X2 X2
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(18)

This differs from the solution in classical elasticity. In contrast, the nonlocal stresses
obtained by Nowinski (1986) coincide with the classical elastic solution.

We observe the following significant results.

(I) Let a~ 0 in eqns (17) and (18). The nonlocal stresses revert to the well-known
classical solutions

P 2xix2
(1 ---

II - n: (xi+xW

P 2x~
(122 = -; (xi+xD 2

P 2xlx~
(1 - - -..,..--;;....--'--7,

12- n:(xi+xD2' (19)

This is preconceived because in this limit the nonlocal constitutive equation (2) reverts to
Hooke's law of classical elasticity.

(2) In the limit X2 ~ 0, we obtain

From eqn (7)

_ sin2 (ka/2)
cc(lxd) = e(k) = (ka/2) 2 ;

the inverse transformation gives the one-dimensional nonlocal kernel function

{

I ( IXd)- 1-- Ixd ~a
a(lxd) = a a

o Ixd > a.

From eqns (12) and (22) the nonlocal concentrated force is

{
P( IXd)- 1-- Ixd ~a

F2 = a a

o Ixd > a.

(20)

(21)

(22)

(23)

This is a non-negative nonsingular decreasing function with a finite support that differs
from the Dirac delta function so long as a::/: O. Adopting different nonlocal kernels, the
nonlocal concentrated force in eqn (12) can be expressed by the different function forms.
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For example, another appropriate function form is the Gaussian distribution (Wang, 1988).
Associating eqn (20) with eqn (23), the nonlocal stress boundary condition

(24)

is satisfied. According to Wang (1988) the nonlocal concentrated force satisfies the property

(25)

The total strength of the nonlocalline force broadened is equal to that of the classical line
force. From eqns (12) and (25), the representations for a concentrated load of strength P
applied in the both nonlocal and classical elastic mediums are mutually correspondent.

(3) Under the limits X1 -+ O. XI -+ O. we have

(26)

The nonlocal stress is the finite value along the line of loading. This result successfully
eliminates the stress singularity which occurs in the classical stress and also the nonlocal
stress derived by Nowinski (1986). Therefore, the stress singularities may be eliminated by
the application of nonlocal elastic theory.

This result can be related to some physical realities. When stress makes atomic bonds
break, t 11 at the point of application of the load reaches theoretical breaking strength t,
and P reaches a theoretical cut-off strength

(27)

It is interesting to find the force involved in breaking the atomic bonds. Here, we use a very
rough estimation. Letting telE '" 0.2 (E is Young's modulus), E""' 50 GNm -1,

a'" 2 x 10- 10 m, we obtain the cut-off strength P,. '" 2 X 10- 9 GNm- l
• Because the mini­

mum line width of a technically possible line load is approximately 10 '" 1000 atomic
spacings, the practical value of Pc may be roughly 10 '" 1000 times larger, or Pc ""' 10- 7

GNm I [the integrals of the stresses in eqn (17) should really be evaluated]. Therefore, the
atoms of surface layers are easily cut off. This may be tested quantitatively by combining
an elaborate experiment on a solid surface with rigorous theoretical calculation. It should
be noted that such a result cannot be obtained through c1assic~1 elastic theory since the
classical maximum stresses at the edges of a load region are all singular.

DISCUSSION

The basic idea ofnonlocal elasticity is that long-range (nonlocal) interactions are taken
into account by a nonlocal elastic constitutive equation, therefore eliminating the stress
singularities which appear in classical elasticity. The classical singular concentrated forces
are smoothened and broadened into the nonsingular because of the long-range interactions
or nonlocal effects characterized by nonlocal kernel functions IX. The nonlocal concentrated
forces should be represented by nonsingular attenuation functions and the attenuating
neighbourhood is determined by adopting a nonlocal kernel in which different internal
characteristic lengths (e.g. lattice parameter, granular distance, scale ofa composite material
structure) can be considered in the treatment of different problems. In this analysis our
goal is a correctly nonlocal approach to atomic lattice effects. Equations (12) and (25) are
general properties of concentrated forces in nonlocal elasticity, although a different IX can be
selected. It is expected that IX is a (j sequence whose limit is the Dirac delta function (Eringen,
1983). Thus in the classical elasticity limit, e.g. a -+ 0, IX becomes a Dirac delta function
and nonlocal elasticity reverts to classical elasticity. This guarantees that the nonlocal
concentrated forces expressed by eqn (12) can revert to classical concentrated forces in the
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limit case. As a result of the correlation between nonlocal and classical concentrated forces,
it is easy to transform concentrated force problems from classical elasticity to nonlocal
elasticity. The result given in this paper can be applied as a Green function to related
problems, such as finite-region load problems.

Acknowledgements-This project was supported by the National Natural Science Foundation of China. I would
also like to thank Prof. Z. D. Chen and Prof. T. M. Dai for their support.

REFERENCES

Dundurs, J. and Hetenyi, M. (1965). Transmission of force between two semi-infinite solids. J. Appl. Mech. 32,
671-674.

Eringen. A. C. (1977a). Continuum mechanics at the atomic scale. Cryst. Lattice Defects 7, 109-130.
Eringen. A. C. (1977b). Edge dislocation in nonlocal elasticity. Int. J. Engng Sci. IS, 177-183.
Eringen. A. C. (1983). On differential equations of nonlocal elasticity and solutions of screw dislocation and

surface waves. J. Appl. Phys. 54,4703-4710.
Kovacs, I. and Voros. G. (1979). Lattice defects in nonlocal elasticity. Physica 968, 111-115.
Nowinski, J. L. (1984). On the nonlocal aspects of the propagation of Love waves. Int. J. Engng Sci. 22,383­

387.
Nowinski, J. L. (1986). The Boussinesq-Flamant problem for an elastic nonlocal half-infinite space. Acta Mech.

58,59-66.
Wang, R. (1988). Line force in nonlocallinear elasticity. Acta Mech. 74, 195-201.
Wang, R. (1989a). Crack problem in nonlocal elasticity. Scientia Sin. A32, 1046--1054 (in Chinese).
Wang, R. (1989b). The mixed boundary-value problem in nonlocal elastic theory. Chinese Sci. Bull. 34, 1340­

1344.


